Environmental Impacts of Metallurgical Engineering

OUTLINE

- General environmental problems arising from industries
- Why recycling is important
- Mining and smelting operations
 - General impact on environment
 - Greenhouse gas emissions
 - Soil degradation
 - Contamination by trace metals
 - Health effects

Complete conversion of one form of energy to another, in other words reversible processes never occur in nature

It is an engineer's goal to completely convert energy to the desired form with the maximum efficiency At less efficiencies spontaneous processes will result in degradation of energy as dissipated waste heat

Engineering practice worlwide has so far been far away from maximum efficiency, reversibility and sustainability. Although invention of fire, steam engine, electricity have gradually improved the efficiency with which man used energy to satisfy his growing needs, Earth suffered irreversible damage as a result of careless engineering

Mining and smelting of metals upset the environmental balance by

- liberating captured C and S in the ores
- converting metals in inert mineral form to reactive pure form
- moving large masses of rock and dumping most of them in landfills

Dissipative use of metals also degrades the environment through corrosion and leaching

All known metals have applications in industry, technology, and everyday uses, and the number of their commercial uses has been accelerating.

Each industrial process of metal manufacturing generates some kind of waste that is discharged into the environment. Unlike organic chemicals, the metals are nondegradable, very persistent, and their build-up in the environment continues Recycling of metal wastes serves to protect the environment by replacing the mined metal and recovering corroding metal from the environment

The waste management and scrap industries collect discarded metals and then either sort them for sale to the secondary metals industry or store them in landfills for long term containment

Which path a metal takes is determined by

- concentration of metal in discarded products
- ease of separation and concentration
- what manner the metal is discarded (separated or mixed)

Their inputs are usually heterogeneous with a significant amount of uncertainty with regard to material content and timing of discard. Investments on scrap collection and processing systems will increase the ratio of products that are recycled and make these industries more reliable and efficient in the future

metal	global per capita stock	MDC per capita stock ^b	LDC per capita stock ^e
aluminum antimony	80	350-500 1	35
cadmium chromium	40	80 7-50	
cobalt		1	
copper gold	35-55	140-300 35-90	30-40
iron	2200	7000-14000	2000
lead	8	20-150	1-4
magnesium		5	
manganese		100	
mercury		10	
molybdenum		3	
nickel		2-4	
palladium		1-4	
platinum		1-3	
rhodium	110	0.2	
silver	110	13	
steel		7085	15
tin		2	15
titanium		12	
tungsten		1	
zinc		80-200	20-40
zinc		80-200	20-40

^a The years of the determinations vary, but most are for the period 2000–2006. The units of per capita stock are kilograms of metal in most cases, but grams of metal for cadmium, gold, mercury, palladium, platinum, rhodium, and silver. ^b The more-developed countries (MDCs) used in this calculation are Australia, Canada, the European Union EU15, Sweden, Switzerland, Japan, New Zealand, and the United States (altogether about 860 million people in 2005). ^c The less-developed countries (LDCs) used in this calculation consist of all countries except those in the "more-developed" category (altogether about 5620 million people in 2005).

Estimated in-use metal stock per capita in 2008

Metal	Product	Predominant Metal-containing Final Goods	Estimated Residence Time	Metal	Product	Predominant Metal-containing Final Goods	Estimated Residence Time (vears)	Metal	Product	Predominant Metal-containing Final Goods	Estimated Residence Time (years)
AI	Building & construction	Siding window frames	30-50	Au	Jewelrv		30-50	Pt	Chemical catalysts	Fuel cells	25
AI	Infrastructure	Cable used by power utilities	30-40	Au	Dental	Inlavs	_	Pt	Electronics	Consumer and business equipment	25
AI	Transportation	Automotive equipment, railway	15-40	Au	Electrical and	Business electronics, consumer	_	Rh	Transportation	Automotive equipment	20-40
		equipment, aviation			electronics	electronics		Bh	Glass manufacture	- atomotio o quipritoriti	_
AI	Packaging	Beverage cans, foil	0.3-0.8	Fe	Building & construction	Building beams, reinforcing bars	30-50	Rh	Chemical catalysts	Fuel cells	_
A	Other		10-15	Fe	Transportation	Automotive equipment, railway	20-40	Bh	Other		_
Sb	Building & construction	Flame retardants	_			equipment, ship building, aviation		Aq	Industrial applications		1-30
Sb	Transportation	Automotive equipment, railway	10-30	Fe	Machinery and	Appliances, industrial (in-plant)	20			Electronics	
		equipment, ship building, aviation			appliances	machinery and equipment				Solders	
Sb	Chemicals		_	Fe	Other		25			Other	
Sb	Business durables	Ceramics and glass	_	Pb	Building & construction	Lead sheet	40-100	Ag	Jewelry, tableware		20-40
Sb	Other	-	_	Pb	Machinery and	SLI batteries	1-4	Ag	Photography	Film, plates	20-40
Cd	Consumer and	Batteries	3		appliances			Ag	Coins and medals	-	10-40
	business durables			Pb	Machinery and	Stationary batteries	8-12	SS	Transportation	Automotive, rail, ship	10-30
Cd	Pigments	Business and consumer applications	_		appliances			SS	Industrial machinery		20
Cd	Industrial durables	Coatings and platings	_	Pb	Infrastructure	Lead pipe	20-50	SS	Building & construction		30-50
Cd	Other		_	Mg	Castings	Transport systems, components		SS	Electronics		10
Cr	Building &	Elevators, railways	30-50	Mg	Alloys	Packaging, transport	_	SS	Other		15
	infrastructure			Mg	Iron desulfurization		-	Sn	Cans and containers		_
Cr	Transportation	Automotive exhaust systems, railway	30 for	Mg	Other		_	Sn	Electrical and		
		equipment, ship building, aviation	planes,	Mn	Iron and steel		_	_	electronics		
			trains, and		applications	a		Sn	Construction	Corrosion prevention	30-50
			ships	Mn	Building & construction	Structural steel	30-40	Sn	Transport	Corrosion prevention, solder	20-40
			5-15 for	Mn	Iransportation	High-strength steel	20-40	Sn	Other		
			automobiles	Mn	Industrial durables	Industrial (in-plant) machinery and	25	11	l itanium dioxide		_
~	Line also be a second second	A	and parts	11-	Oblas alkali meduation	equipment		T .	pigment		
Gr	Household appliances	Appliances, nousenoid products	15	Hg	Chior-alkali production	Dental amalgama instrumenta			Carbides, chemicals,		
C -	& electronics	Cutlery Instances	E 1E	нg	manufactured products	Dental amaigams, instruments,	_	14/	metal and metal alloys		
Gr	wetai goods & other	Cutiery, lasteners	5-15	Цa	Stock changes	iigiturig		W	Cutting tools		1
<u><u></u></u>	uses Inductrial machinery	Heat evelopment tanks	20	ну Ца	Articinal cold			W	Cignung		
Co	Transportation	Automotivo oquipmont railway	20-40	Mo	Steel allovs	Stainless steel superallows	_	70	Duilding & construction	Calvanisad stool (o.g. framos	10-50
00	папэропацоп	equipment ship building aviation	20-40	Mo	Catalysts	otaniess steel, superanoys	_	20	Building & construction	nining) zinc allove (e.g., italites,	10-50
Co	Chemicals	equipment, ship building, aviation	_	Mo	Lubricants	MoS	_			appliances) and nure zinc (e.g.	
Co	Cutting tools	Rlades disks	1	Mo	Pigments	IN OF	_			roofing)	
Co	Industrial durables	Industrial (in-plant) machinery and	20	Mo	Other			Zn	Transportation	Motor vehicles, vehicle tires, and	2-20
		equipment	20	Ni	Building & construction		30-50		ranoportation	railway transport, sea and air transport	2 20
Cu	Building & construction	Building wire and copper tube	25-40	Ni	Infrastructure		30-50	Zn	Business durables	Machinery	_
Cu	Infrastructure	Copper cable used by telecom utilities	50	Ni	Transportation	Automotive equipment, railway	10-30	Zn	Chemicals	,	_
		and power utilities				equipment, ship building, aviation		Zn	Agriculture		
Cu	Transportation	Automotive equipment, railway	10-30	Ni	Consumer durables	Appliances, consumer electronics,	10-15				
		equipment, ship building, aviation				household products					
Cu	Consumer durables	Appliances and extension cords,	10	Ni	Other		_				
		consumer electronics, fasteners and		Ni	Industrial durables	Industrial (in-plant) machinery and	20				
		closures, household products				equipment					
Cu	Business durables	Business electronics, lighting and	20	Pd	Transportation	Automotive equipment	20-40				
		wiring		Pd	Consumer durables	Consumer electronics, business	5-10				
Cu	Industrial durables	Industrial (in-plant) machinery and	20			electronics					
		equipment		Pd	Dental		-				
				Pd	Other		_				
				Pt	ransportation	Automotive equipment	20-40				
				Ρt	Jeweiry		20				

Specification of scrap metal sources

Jewelry

Such statistical data is used to generate scenarios of future use intensity, discard, and reuse, with good spatial (city, country, world) and temporal (month, year, ten years) resolution

In order to manage wastes effectively, more investment on scrap collection and processing is needed This requires a profitable recycling business and to be able to predict the supply and demand of scraps

So we need to evaluate stocks and their rates of growth and decay better and use that information to make informed inferences about the future in our city/country/world Lets consider the mining and smelting of metal ores as an alternative to recycling industry

Metal ores are extracted by mining, which involves removal of rock from the ground.

About 50% the ore mined in the world is extracted from open pits, the other half coming from underground mines

Open-pit mining produces larger amounts of overburden (the waste rock that overlies the ore) than underground mining does For example, one of the largest open-pit mines in the world, the Bingham copper mine in Utah, USA, removes >225 000 Mg of rock each day, only 20% of which is ore Cumulative use of land by mining throughout the world between 1976 and 2000 was about 37 000 km² or about 0.2% of Earth's land surface

About 60% of disturbed areas is used for the disposal of overburden, which accounts for about 40% of the solid waste generated yearly

Especially copper mining produces huge amounts of waste:

The ratio of material handled to units of marketable metal is 420:1 with a typical proportion of metal in ore 0.6%

Tailings	Mine waste	Total waste
	——————————————————————————————————————	
6 900	17 000	23 900
3 000	8 500	11 500
180	2 000	2 180
500	370	870
730	70	800
350	400	750
480	50	530
50	30	80
12 190	28 420	40 610
	Tailings 6 900 3 000 180 500 730 350 480 50 12 190	Mine Tailings Mine waste — Tg 6 900 17 000 3 000 8 500 180 2 000 500 370 730 70 350 400 480 50 50 30 12 190 28 420

Table 2. Estimated cumulative amounts of mine waste and tailings from 1910 through 1981 in the USA in millions of Mg.[†]

† USEPA, 1985.

The primary copper ore mineral is chalcopyrite

Others are secondary minerals formed by the alteration of primary *chalcopyrite* and *chalcocite*

CuS ores are usually associated with *pyrite* (FeS₂) and other base metal sulfides such as ZnS, PbS

Copper minerals are usually associated with siliceous and other gangue minerals so that their grades are as low as 1-2% Cu

```
Chalcopyrite (CuFeS<sub>2</sub>)
Bornite (Cu<sub>5</sub>FeS<sub>4</sub>)
Chalcocite (Cu<sub>2</sub>S)
Covellite (CuS)
Enargite (CuAsS<sub>4</sub>)
Malachite (CuCO<sub>3</sub>.Cu(OH)<sub>2</sub>)
Cuprite (Cu<sub>2</sub>O)
Chrysocolla (CuSiO<sub>3</sub>.2H<sub>2</sub>O)
```


Journey of Metal Oxide from Ore to Ingot

Mineral Dressing

Minerals must be liberated from their intimately associated gangue minerals before they can be collected in separate products

The first part in mineral dressing is comminution which involves crushing and grinding of the ore to a point where each mineral grain is free

The goals of comminution are

- 1- To obtain the correct degree of liberation of minerals
- 2- To increase the specific surface area of minerals for hydrometallurgical treatment

Ore particles are continuously screened after crushing in a closed loop process

The second part in mineral dressing is separation of the liberated valuable minerals from gangue minerals or concentration It is mostly done by physical means because they do not change the characteristics of the raw materials

Three end products of concentration are Concentrate – Valuable minerals separated from ore Tailing – Fraction of ore discarded as a valueless part Middlings – Particles with valuable minerals and gangue locked together. Further liberation needed by comminution

Concentration

Froth floatation process for the concentration of sulfide ores.

Tailings from Cu-sulfide ore beneficiation amount to as much as 98% of the ore volume and are disposed of in large piles or valley fills

The environmental concern in mining areas is primarily related to mechanical damage of the landscape and acid mine drainage

Although mines are classified on the basis of their predominant product, they may produce large quantities of other elements as coproducts. For example, Zn mines produce 72% of all Zn; 100% of Cd, Ge, In, and Th; and 3.1, 4.1, and 6.1% of all Au, Ag, and Pb in the USA. As a result, metal ore processing usually leads to the multi-elemental contamination of the environment.

In situ leaching – Mine water for leaching CuSO₄

Heap leaching – Ore rocks in dumps

Mining and beneficiation processes generate four categories of largevolume waste:

- 1. mine waste (overburden, barren rocks),
- 2. tailings,
- 3. dump heap leach,
- 4. mine water

The volume of mine waste as a percentage of the total crude ore ranges from 9 to 27% for underground mines. In surface mining, the amount of waste ranges from 2 to 10 times the total volume of crude ore Dump leaching, heap leaching, and in situ leaching are the processes used to extract metals from low-grade ore. Sulfuric acid is usually applied in Cu operations. As the liquid percolates through the ore, it leaches out metal. Dump leach piles often cover hundreds of hectares, rise to 60 m, and contain tens of millions of Mg of low-grade ore, which becomes waste after leaching.

The mine water is water that infiltrates a mine and must be removed to facilitate mining

Open-pit Cu mines are rarely filled after mining, because they are so large and the ore bodies are not lying fiat or near to the surface

Modern mines are regraded and revegetated when they are abandoned, as are the waste dumps and tailings piles. This was not true for the older Cu mines, which are a source of metal rich, acid water and sediments.

Revegetation on old gold mining pit in Ghana

Copper mine in Arizona regraded and recontoured with planting for revegetation

Mining, smelting and refining processes produce gaseous and particulate matter emissions, waste waters, and solid wastes (slag). These are emitted into ambient air, discharged into water systems, or disposed on land

Fig. 4. Proportion of trace element emissions from mining and smelting into air, soil, water (Nriagu and Pacyna, 1988; Nriagu, 1989).

The most noticeable form of contamination from the metal production industry is the discharge of emissions to the atmosphere.

Tall stacks discharge pollutants at such heights that the emissions are sufficiently diluted when dispersed into the lower atmosphere to meet air quality requirements.

The major solid wastes generated by smelting and refining, which may constitute hazardous waste, include: process wastes, residuals from air pollution control, and waste water treatment systems

Fig. 5. Schematic diagram of the potential environmentaDimpacts of mining/smelting industries.

Smelting

Simultaneous melting and separation of the charge into two immiscible liquid layers of slag and matte or slag and liquid metal

Smelting for matte – A pyrometallurgical concentration stage in the overall extraction of a metal from its sulphides

Metal sulphides	Matte smelting under neutral		Matte – Cu ₂ S, FeS (30-55% Cu)
20-30% Cu	or reducing conditions	-	$Slag - SiO_{2}$, CaO, $Al_{2}O_{3}$

Smelting for metal – Separation and reduction of metal oxides to metals and formation of slag containing gangue minerals, impurities and fluxes

Metal oxidesSmelting for metalLiquid metal – Pig iron (Fe+4%C+1%Si) $Fe_2O_{3,} Fe_3O_4$ with reducing agent (coal, coke)Liquid slag – SiO_{2,} CaO, Al_2O_3

Matte Converting - Preferential oxidation of the more reactive impurity metal sulphides

Liquid matte containing	air and oxygen	Liquid matte containing
metal sulphides Cu ₂ S, FeS	blowing	metal oxides Cu ₂ O, FeO

Air blowing is controlled to convert the remaining more noble metal sulphide to the required metal $2Cu_2S + 3O_2 = 2Cu_2O + 2SO_2$

Pyrometallurgical Extraction and Refining Processes

Calcination

The chemically bound water, CO₂ and other gases are removed from metal hydrate or carbonate particles by calcination

The temperature required for complete calcination of a mineral is much higher than drying T

Decomposition temperature (i.e. temperature required for decomposition gas product pressure to reach 1 atm) is different for each mineral

FeCO3T>200 CMnCO3T>400 CCaCO3T>900 CBaCO3T>1000 CAl(OH)3T>1000 C

Types of calcination furnaces Shaft furnace – Calcining coarse particles –

Rotary kiln – Particles of mixed coarse and fine size which disintegrate during the process Fluidized bed furnace – Particles of uniform and fine size

Calcination and iron-making processes are the main industrial contributors to greenhouse gas emissions

World Greenhouse gas emissions by sector

Generally, economically important mineral ores occur as metallic sulfides. Copper smelting is regarded as one of the major man made sources of SO_2 , which contributes to acid rain.

Despite the steady reduction of SO_2 emissions since the 1970s and particulate matter emissions since the 1950s, smelting is still a significant source of gaseous and particulate contaminants.

Fig. 1. Estimated global atmospheric emissions of SO₂.

Fig. 2. Estimated global atmospheric emissions of particulate matter.

The Sudbury Ni and Cu smelters in Ontario, Canada produced more SO₂ between 1969 and 1979 than all volcanoes throughout the earth's history Consequently, soil near the three Sudbury smelters had pH values from 3 to 4 and lake water pH from 4 to 5. The water pH has decreased by 1 to 2 units in Sudbury area lakes since preindustrial times as estimated by diatom analysis

Topsoils in the vicinity of smelters contain elevated levels of trace elements The abundance and diversity of soil microorganisms are generally reduced by smelter emissions and acidic soil conditions. This reduction lowers soil fertility by disrupting C and N biogeochemical cycles Primary metal smelters contribute greatly to the vegetation damages due to SO₂ fumigation, soil acidification, and metal contamination

The trace element uptake from contaminated soils and direct deposition of contaminants from the atmosphere onto plant surfaces can lead to the plant contamination by trace elements. Consequently, plant toxicity and the potential for transfer of contaminating elements along the food₂chain exist

The gaseous, dust, liquid, and solid wastes discharged from mines and smelters into the environment cause:

- soil and water acidification,
- deterioration of soil biology and fertility,
- soil erosion,
- air, water, soil, and plant contamination by trace elements

Soil degradation

In mining and smelting areas, soils are degraded by disposal of mine tailings, acid mine drainage, and aerial deposition of contaminants from smelters

Soils often undergo strong acidification in areas where metal ores are extracted and processed. This process is caused by acidifying compounds emitted from smoke stacks (pyrite, pyrrotite, chalcopyrite) and draining acidic waters from mines and tailings.

Metal processing does not remove all pyritic minerals so the tailings contain significant sulfide concentrations that oxidize and produce acid:

$$2FeS_2 + \frac{15}{2}O_2 + 7H_2O \to 2Fe(OH)_3 + 4H_2SO_4$$

The amount acid produced by pyrites is a function of a many variables: temperature, oxygen supply, concentration of sulfides, initial pH of the surroundings, total Fe concentrations, and presence of bacteria Also emissions of SO_2 from smelters contribute to the soil acidification Leaching, plant uptake, and runoff of metals from soils increase with soil acidity

For example soils are strongly acidified (pH in range 2.0-7.5) in the Sudbury Cu-Ni mining and smelting basin Sudbury soils had the concentrations of mobile AI as high as 100 mg/kg, which is one of the factors of plant toxicity of these soils. Also high concentrations of exchangeable Cu and Ni were detected in these soils There was a linear relationship between the level of the exchangeable metals in the soils and their concentrations in tree leaves

Prolonged soil acidification decreases base saturation of soils, reduces humus content, and alters mineral composition of soil clay fraction The abundance and diversity of soil microorganisms (soil fertility) are generally reduced by smelter emissions and acidic conditions

The soil flora of contaminated sites in Sudbury was characterized by a diversity of chlorophytes, and a notable absence of cyanobacteria Similar results have been reported for soils subject to emissions from various metallurgical plants in Russia: cyanobacteria were absent from soils within a radius of 20 km

The chlorophyte-dominated flora is characteristic of acid soils. Chlamydomonas acidopholia (green algae isolated from Sudbury soils) were not only acid-tolerant but also metal-tolerant. Erosion does not change the metal concentrations in the soil material Its result is translocation of the metal-contaminated material and its dispersion over a bigger area

Wind and water erosion and the associated environmental degradation are widespread problems related to tailing material Leaching of acidifying compounds from tailings leads to an acidification of adjacent soils Contamination by trace metals

Mining and smelting are not the main source of global trace metal input into soil. Other sources like discarded manufactured products, coal ashes, agriculture, and transportation are more effective However, strong soil contamination with trace metals locally in mining/smelting regions has been reported

Element	Discarded manufactured products	Atmospheric fallout‡	Coal ashes	Agriculture§	Other sources¶	Total
			Gg yr ⁻¹			
Sb	2.4	2.5 (0.6)	12.0	13.0	3.8	26
As	38.0	13.0 (5.2)	22.0	22.2	2.5	82
Cd	1.2	5.3 (3.3)	7.2	4.8	5.5	22
Cr	458.0	22.0	298.0	116.0	38.0	898
Cu	592.0	25.0 (9.4)	214.0	74.0	71.0	971
Pb	292.0	232.0 (33.1)	144.0	30.2	62.1	959
Mn	300.0	27.0 (0.2)	1076.0	200.0	95.7	1669
Hg	0.7	2.5 (0.05)	2.6	2.5	1.7	8.3
Ni	19.0	24.0 (1.4)	168.0	80.4	35.8	294
Se	0.2	2.0 (0.3)	32.0	10.1	2.1	41
V	1.7	60.0 (0.03)	39.0	6.4	7.1	128
Zn	465.0	92.0 (37.6)	298.0	150.0	149.0	1322
		. ,				

Table 4. Estimated global inputs of trace elements into soils.†

† Nriagu and Pacyna, 1988; Nriagu, 1990.

Number in brackets represent amounts of elements from mining and smelting.

§ Includes agricultural and animal wastes, fertilizers, and peat.

¶ Includes logging and wood wastes, urban refuse, organic wastes, and solid waste from metal fabrication.

Table 5. Cadmium concentrations in surface soils in the vicinity Table 7. Lead concentrations in surface soils in vicinity of mines of mines and smelters.

and smelters.

	Range	Mean	Source of contamination	References	Range	Mean	Source of contamination	Reference
Dhand Znanadustian	mg kg ⁻¹	dry wt.			mg kg ⁻¹ d	ry wt.		
Pp and Zn production	24-440	159	Zn–Pb mining	Matthews and Thornton, 1982	6-7 100	160	Zn–Pb smelting	Dudka et al., 1995b
Ι	1.0-3.9	1.8	Old mine	Colbourn and Thornton, 1978	8-710	85	Cu-Pb-Bi	Asami et al., 1990
loade to the most	0.4-540	6.1	Old mine	Davies and Roberts, 1978	40 251	150	smelting	A: 1098-
leads to the most	1.2-94	18	Old mine	Davies and White, 1981	49-371	120	Ag-Cu-PD-Zn	Asami, 1900a
	0.3-102	2.5	Zn-Pb smelting	Dudka et al., 1995a	20 19 400	710 4	Cu cmolting	Beauty and Szawaran 1999a
covere coil	0.1-10	4./	Cu-NI mining and	Dudka et al., 19950	20-10 400 28-1 226	210.0	Cu smelting	Roszyk and Szerszen, 1966a Dobolo of al. 1003
Severe soli	0.4_132	32	Mining/smelting	Dudka and Saidak, 1992	4-8 200	102	Mining/smelting	Dudka and Saidak, 1992
	1.8-9.2	3.9	Zn-Ph mining and	Asami, 1988a	475-7 800	3 829	Zn-Ph mining	Matthews and Thornton, 1982
contamination not	1.0 /.2	50	smelting	Tabanny as oow	280-448	_	Zn-Pb mining and	Davies and Roberts, 1978
containination, not	11-1781	-	Zn smelting	Scokart et al., 1983			smelting	
	3-750	-	Zn smelting	Jordan and Lechevalier, 1975	38-14 910	1 759	Pb mining	Davies and White. 1981
only hocause of Ph	5–14	-	Cu smelting	Kuo et al., 1983	190-3 000	-	Old mine	Colbourn and Thornton, 1978
Unity Decause OF FD	0.02-10.9	1.1	Cu smelting	Roszyk and Szerszen, 1988a	189-14 000	-	Zn smelting	Scokart et al., 1983
		12	Zn–Pb smelting	Rauta et al., 1987	92-2 580	862	Zn-Pb smelter	Nwankwo and Elinder, 1979
and Zn. but also by	Normal C	d soil leve	l: 0.1–1		Normal Pb	soil level:	5-30	
	T.L.	C		unfoce sails in the visipity of	Table 8, Z	ine cone	entrations in surfa	ce soils in vicinity of mines
Ag As Cd Cu and Ni	Table 6. mines	and sme	ters.	urface sons in the vicinity of	and sme	lters.		
							Former of	

mmes a	mu smen	CI3.					
Range	Меап	Source of contamination	Reference	Range	Mean	Source of contamination	References
mg kg ⁻¹	drv wt.			— mg kg ⁻¹ dr	y wt. —		
11-1 890	116.0	Ni-Cu mining	Dudka et al., 1995b	11-10 500	205	Zn-Pb smelting	Dudka et al., 1995a
11 1 0/0	11000	and smelting	,	49–554	-	Cu smelting	Rebele et al., 1993
60-3 700	-	Ni-Cu mining	Freedman and Hutchinson, 1980	238-472	349	Zn–Pb mining and smelting	Thornton et al., 1980
76_9 700	_	Ni_Cu mining	Hazlett et al. 1983	7-910	-	Cu smelting	Drozd et al., 1984
70-9 700	_	and smelting	Haziett et aug 1965	2040-50 000	14 970	Zn–Pb mining	Matthews and Thornton, 1982
48-15 000	_	Cu smelting	Rebele et al., 1993	10-49 390	728	Zn-Pb mining	Davies and Roberts, 1978
30-3 280	460.5	Cu smelting	Roszyk and Szerszen, 1988a,b	11-641	96	Pb mining	Davies and White, 1981
40-1 989	_	Zn smelting	Scokart et al., 1983	400-4 245	-	Zn–Pb mining	Letunova and Krivitskiy, 1979
24-9 618	-	Cu smelting	Jordan and Lechevalier, 1975	1340-180 000	-	Zn smelting	Scokart et al., 1983
No-wal Cu	ant longh	1 20	, ,	180-3 500	1 050	Zn-Pb smelting	Nwankwo et al., 1979
Normai Cu	son lever.	2-20		430-1 370	-	Cu smelting	Kuo et al., 1983
				110-60 700	_	Zn smelting	Jordan and Lechevalier, 1975
					554	Ag-Cu-Pb-Zn	Asami, 1988a

Normal Zn soil levels: 15-100

Table 9. Element	t concentrations i	in surfa	ice soils ir	ı vicinity	of m	ines and	l smelters.
------------------	--------------------	----------	--------------	------------	------	----------	-------------

Element	Range	Mean	Normal level	Source of contamination	References
_		mg kg ⁻¹ dry wt			
As	0.3-145	10.2	1-15	Cu smelting	Roszyk and Szerszen, 1988a
Bi	0.4-122	4.2	0.3	Cu-Pb-Bi smelting	Asami et al., 1992
Cr	30-4560	-	4-80	Cr smelting (smelter slag)	Asami, 1988b
Co	1.3-38.3	5.8	110	Cu smelting	Roszyk and Szerszen, 1988b
Hg	0.01-15.1	0.9	0.01-0.5	Cu smelting	Roszyk and Szerszen, 1988b
In	0.02-1.9		0.02-0.08	Zn-Pb mining	Asami et al., 1990
Ni	5-2150	105	2-30	Ni-Cu mining and smelting	Dudka et al., 1995a
	100-3000			Ni-Cu mining and smelting	Freedman and Hutchinson, 1980
	160-12300	-		Ni-Cu mining and smelting	Hazlett et al., 1983
	3-450	36		Cu smelting	Roszyk and Szerszen, 1988b
Sb	0.6-37	3.2	0.4	Cu-Pb-Bi smelting	Asami et al., 1990

There is a well-established opinion in the literature that the retention time for trace metals in soils (time span needed to reduce the element concentration by half) is from hundreds to thousands of years

Cd, Ni, and Zn are considered to have the shortest retention time, Cu medium, Pb and Cr the longest retention time under similar environmental conditions

The extensive area of Sudbury soils remains barren or semibarren of vegetation as a result of severe environmental conditions. Following environmental improvement in the Sudbury area, several plant species have colonized barren sites; however, recolonization was confined to relatively favorable; sites by species that have evolved metal tolerance

Health effects

Studies done at regions rich with ferrous and nonferrous mining and smelting, hard coal mines, power plants, and industry reveal:

- ambient SO₂ concentrations much greater than the safe level (60 μ g/m³)
- ambient concentrations of acid aerosols (mainly sulfates) that are high enough to cause a significant deterioration of lung function
- oxygen content of the air decreased by as much as 20%, resulting in a health hazard to heart patients and asthmatics

Such hazardous conditions are believed to be responsible for 15% higher circulatory problems, 30% more cancer cases, and 47% greater respiratory illnesses observed in residents of this region The case studies performed in the vicinity of the Pb mine and smelter plant revealed that the blood Pb concentrations in exposed children were considerably higher than in a reference group Primary metal smelters are the main sources of atmospheric emissions of As, Cu, Cd, Sb, and Zn on a global scale and they contribute largely to overall emissions of Cr, Pb, Se, and Ni

Therefore the current levels of metals in the vicinity of many mining and smelting operations are high enough to constitute a hazard to human health

Lets look at the hazardous effects of various metals:

<u>Copper</u> - Environmental concern with Cu production has centered on emissions of SO₂ and easily vaporized trace elements (As, Cd, Hg) from smelters; however Cu emission is also a serious problem.

<u>Lead and Zinc</u> – They are often found together in ore deposits, but the metals have different applications and biological effects. Zinc is a physiologically essential element, whereas Pb has no known positive biological function and creates serious environmental and health hazards

Lead and Zn processing is an important historical source of environmental contamination with Cd, Pb, Zn, and other elements

- Lead oxides and sulfates from flue gases are soluble and can be moved to deep levels in the soil by rainwater. They are also dispersed from the source because of their small particle size
- <u>Arsenic</u> It is well-known for its toxicity. Large doses of As (>100 mg per person) induce acute arsenic poisoning resulting in death Arsenic vaporizes at only 615°C and therefore is released during the roasting of base-metal ores. Older smelters did not capture this vaporized metal at scrubbers and are surrounded by zones rich in As. (e.g. Sudbury) <u>Cadmium</u> – It is regarded as, potentially, one of the most toxic trace elements in the environment. Cadmium is particularly hazardous because of its easy uptake by plants and its tendency to accumulate in food chain crops.

About 60% of the total input of Cd into air comes from smelting and mining. The metal is recovered from flue dust during the roasting and sintering of sphalerite and in sludge from the electrolytic refining of Zn. With the production of 1 Mg Zn, 3 kg of Cd are produced 38